>'smith&nephew

Knee Technique Guide

MPFL reconstruction with autologous gracilis tendon using the two bone tunnel technique

Prof. Elvire Servien, MD, PhD Prof. Philippe Neyret, MD

Knee

Hip Shoulder Extremities

MPFL reconstruction with autologous gracilis tendon using the two bone tunnel technique

Table of Contents

Scope	5
Introduction	5
Patient Preparation / Portal Placement	6
Surgical Technique	7
1. Graft harvest and preparation	7
2. Patella Preparation	7
3. Femoral Tunnel Preparation	8
4. Femoral graft fixation	9
5. Positioning the graft	10
6. Suturing	10
Ordering Information	11
References	

This surgical technique was prepared under the guidance of Prof. Elvire Servien and Prof. Philippe Neyret. Created under close collaboration with the physician, it contains a summary of medical techniques and opinions based upon her training and expertise in the field, along with his knowledge of Smith & Nephew's BIOSURE HA interference screw.

Smith & Nephew does not provide medical advice and recommends that surgeons exercise their own professional judgement when determining a patient's course of treatment. This surgical technique is presented for educational purposes only.

Scope / Introduction

Scope

The aim of the medial patellofemoral ligament (MPFL) reconstruction is to re-establish the alignment of the patella in the trochlear groove across the entire range of motion, particularly when approaching full extension. The technique herein described is a mini-open procedure using a free gracilis tendon graft and applying the two bone tunnel technique for anatomical reconstruction of the MPFL.

Introduction

Patellofemoral instability can be caused by congenital anomalies or through traumatic patellar dislocations¹⁻⁴ with the latter being associated with rupture of the MPFL in over 96% of patients^{5,6}. In patients with recurrent dislocations, an increasing insufficiency of the medial patellar restraints can be observed. The combination of MPFL insufficiency with instability predisposing factors, such as trochlea dysplasia or patella alta, results in recurrent and continuous patellar dislocations. It is therefore crucial to restore sufficient function of the MPFL.

Previously the focus was to correct the extensor mechanism by re-establishing proper alignment of the patella, or by arthroscopically tightening the medial joint capsules either alone or in combination with a lateral release. However, anatomical, biomechanical and clinical studies have shown that these procedures are not able to reliably restore patellofemoral stability⁷⁻¹¹, especially in the presence of trochlea dysplasia¹². MPFL reconstruction maintains patellofemoral function even in the presence of trochlea dysplasia^{13,14} and provide good mid and long-term stability, with significant improvements in knee function¹⁴⁻¹⁶.

This guide illustrates mini-open MPFL reconstruction using the two bone tunnel technique. The patellar fixation used in this technique provides good restoration of the MPFL through the wide insertion at the patella, which mimics that of the native MPFL¹⁷.

Prepared in Consultation with:

Prof. Elvire Servien, MD, PhD Prof. Philippe Neyret, MD Groupement Hospitalier Lyon Nord Centre Albert Trillat Pavillon R Orthopedie 103 Grande Rue de la Croix-Rousse 69004 Lyon France

Patient Preparation

Patient Preparation

Supine position, arthroscopy table, lowered position of contralateral leg for improved access to medial side of the operated leg.

The knee should be positioned at 90° of flexion.

Tip:

The lowered contralateral leg allows for easy access when imaging.

Portal Placement

None required.

Surgical Technique

The surgical technique is composed of 6 surgical steps.

1. Graft harvest and preparation

- Harvest the gracilis tendon in the standard fashion. A length of 16–20 cm is sufficient for MPFL reconstruction.
- b. Whip-stitch the proximal end of the graft using high strength #2 ULTRABRAID sutures.

Figure 1

c. The graft is then doubled over a passing suture, and the limbs are sutured together at a length of 2 cm at the looped end (Fig 1). The graft produced is Y shaped, with two free whip-stitched limbs and a doubled end with a passing suture.

2. Patella Preparation

- a. Position the knee in 90° of flexion.
- **b.** A 2–3 cm vertical incision allows exposure of the medial border of the patella.
- **c.** The incision is made to bone using a #15 blade.
- d. The patella periosteum is divided with a blade (Fig 2).
- e. While keeping the knee capsule intact, layer 2 is separated using a Kocher clamp, creating a pocket between the original MPFL and joint capsule.

Figure 2

Large Tendon Stripper, closed Cat. No. 7207179

Tendon Stripper, closed Cat. No. 013550*

GRAFTMASTER III system Cat. No. 72202788

ULTRABRAID #2 suture Cat. No. 72200886

Figure 3

Figure 4

Figure 5

Two tunnels are created 10 mm apart in the proximal third of the patella by sequential drilling using a 3.2 mm and 4.5 mm drill bit. Each tunnel begins on the medial border of the patella and exits on the anterior face 8–10 mm from the medial border (**Fig 3**).

3. Femoral Tunnel Preparation

- **a.** Position the knee in 30° of flexion.
- b. A 1–2 cm vertical incision is made over the peak of the medial femoral epicondyle and the adductor tubercle. The location is identified by palpation with the knee in varus. The tendon of the adductor magnus and the epicondyle are generally easy to identify. The dissection is carried out to bone.
- c. A guide wire pin with an eyelet is directed from medial to lateral, proximal to the epicondyle and beneath the adductor tubercle, through the metaphysis of the lateral femur and out through the skin of the lateral thigh (**Fig 4**).

Tip:

f.

Use an image intensifier as a control to avoid gross errors.

Using a 7 mm endoscopic cannulated drill reamer over the guide pin, a blind tunnel is created in the medial epicondyle (Fig 5). This tunnel must be of sufficient length (25 mm) to accommodate the folded and sutured end of the graft (20 mm).

Endoscopic Cannulated Drill 4.5 mm Cat. No. 7207315

Drill tip passing pin Cat. No. 7208678

Endoscopic Cannulated Drill bit diameter 7 mm Cat. No. 013660

4. Femoral graft fixation

- The passing suture is then pulled through the femur using the eyelet of the guide pin, and then used to pull the graft into the tunnel (Fig 6 and 7).
- Once adequate insertion has been confirmed, the graft is fixed using a bio-absorbable BioSure HA interference screw (7 mm x 25 mm) (Fig 8).

Figure 6

Figure 7

Figure 8

BioSure HA Interference Screw 7 mm x 25 mm Cat. No. 72201772

Figure 9

Figure 10

Figure 11

5. Positioning the graft

- a. A pair of artery forceps is then passed from the patella incision to the posterior incision. It is passed in the plane between the residual MPFL fibres and the capsule (between the second and third capsuloligamentous layers) (Fig 9).
- Pass the artery forceps through the patellar tunnel from the anterior entrance. Use the artery forceps to catch the suture of the free limbs of the graft. The free limbs of the graft are passed in the sub capsular plane and pulled into the patella tunnels one-by-one (Fig 10).

Note:

The passage of the limbs into the medial patella tunnels is often difficult. The tunnel entrances must be well prepared.

- c. Once through the tunnels, the graft limbs are sewn back onto themselves using an absorbable suture material e.g. vycril (Fig 11). The graft is sutured with the knee in 30° of flexion.
- **d.** The patella must be central whilst the suturing is performed, to obtain proper graft tension.

Important:

This is the least reproducible step. The risk is to over-constrain the patella, which should remain mobile but not subluxatable. Lateral movement of between 7 and 9 mm suggests correct tensioning.

6. Suturing

The skin is closed where possible using subcuticular closure. A combination of Monocryl, Dermabond and suture strips may be used.

Ordering Information

Ordering Information

To order the instruments used in this technique contact an authorised Smith & Nephew representative. Prior to performing this technique, consult the Instructions for Use documentation provided with individual components – including indications, contraindications, warnings, cautions and instructions.

Endoscopic Drill Reference # Description		Drill-Tip Passing Pins with eyelet for graft passage Paterance #Description		
013499	Endoscopic drill 6 mm	7208678	2.4 mm x 15" (28 cm) Graduated Drill Tin	
013660	Endoscopic drill / mm	/2000/0	Passing Pin sterile single use	
7207315	Endoscopic Cannulated Drill bit, 4.5 mm			
Graft Harvesting/Preparation Instruments Reference # Description		Sutures Reference #	Description	
7207179	Large Tendon Stripper, closed, 7.4 mm I.D. x 13.5" working length	7210914 7210915	ULTRABRAID #2 white suture + needle assembly, 38", single package, sterile	
013550*	Tendon Stripper, closed, 6.4 mm I.D. x 12" working length		ULTRABRAID #2 COBRAID suture +	
013554*	Tendon Stripper, slotted, 5 mm I.D. x 12" working length		sterile (10 per box)	
72202788	GRAFTMASTER III System	Interference Screw and Other		
72202452	GRAFTMASTER III Preparation board			
72202316	GRAFTMASTER III Sliding base (2)	72201722 7211138	7 mm x 25 mm BIOSURE HA Screw BIOSURE Guide Wire, 1.2mm x 9" (5 per box) BIOSURE driver	
72202315	GRAFTMASTER III Tissue grasper (2)			
72202317	GRAFTMASTER III Cutting strip			
72202453	GRAFTMASTER III BTB Holder			
72202319	GRAFTMASTER III Slotted Sizing block	, 2201007		
72202441	GRAFTMASTER III System Tray			

References

References

- 1. Arendt, E. A., Fithian, D. C.Cohen, E. Current concepts of lateral patella dislocation. Clin Sports Med. 2002;21:499-519.
- 2. Clifton, R., Ng, C. Y.Nutton, R. W. What is the role of lateral retinacular release? J Bone Joint Surg Br. 2010;92:1-6.
- 3. LeGrand, A. B., Greis, P. E., Dobbs, R. E.Burks, R. T. MPFL reconstruction. Sports Med Arthrosc. 2007;15:72-77.
- 4. White, B. J.Sherman, O. H. Patellofemoral instability. Bull NYU Hosp Jt Dis. 2009;67:22-29.
- 5. Guerrero, P., Li, X., Patel, K., Brown, M.Busconi, B. Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. Sports medicine, arthroscopy, rehabilitation, therapy & technology : SMARTT. 2009;1:17.
- 6. Sallay, P. I., Poggi, J., Speer, K. P.Garrett, W. E. Acute dislocation of the patella. A correlative pathoanatomic study. Am J Sports Med. 1996;24:52-60.
- Bicos, J., Fulkerson, J. P.Amis, A. Current concepts review: the medial patellofemoral ligament. Am J Sports Med. 2007;35:484-492.
- 8. Christoforakis, J., Bull, A. M., Strachan, R. K. et al. Effects of lateral retinacular release on the lateral stability of the patella. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2006;14:273-277.
- 9. Farahmand, F., Naghi Tahmasbi, M.Amis, A. The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability--an in-vitro study. The Knee. 2004;11:89-94.
- 10. Senavongse, W., Farahmand, F., Jones, J. et al. Quantitative measurement of patellofemoral joint stability: force-displacement behavior of the human patella in vitro. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2003;21:780-786.
- 11. Waligora, A. C., Johanson, N. A.Hirsch, B. E. Clinical anatomy of the quadriceps femoris and extensor apparatus of the knee. Clin Orthop Relat Res. 2009;467:3297-3306.
- 12. Schottle, P. B., Scheffler, S. U., Schwarck, A.Weiler, A. Arthroscopic medial retinacular repair after patellar dislocation with and without underlying trochlear dysplasia: a preliminary report. Arthroscopy. 2006;22:1192-1198.
- Steiner, T. M., Torga-Spak, R.Teitge, R. A. Medial patellofemoral ligament reconstruction in patients with lateral patellar instability and trochlear dysplasia. Am J Sports Med. 2006;34:1254-1261.
- 14. Bitar, A. C., Demange, M. K., D'Elia, C. O.Camanho, G. L. Traumatic patellar dislocation: nonoperative treatment compared with MPFL reconstruction using patellar tendon. Am J Sports Med. 2012;40:114-122.
- Howells, N. R., Barnett, A. J., Ahearn, N., Ansari, A.Eldridge, J. D. Medial patellofemoral ligament reconstruction: a prospective outcome assessment of a large single centre series. J Bone Joint Surg Br. 2012;94:1202-1208.
- Schottle, P. B., Fucentese, S. F.Romero, J. Clinical and radiological outcome of medial patellofemoral ligament reconstruction with a semitendinosus autograft for patella instability. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 2005;13:516-521.
- 17. Servien E, Fritsch B, Lustig S, Demey G, Debarge R, Lapra C, Neyret P. In vivo positioning analysis of medial patellofemoral ligament reconstruction. Am J Sports Med. 2011;39(1):134-9.

Smith & Nephew, Inc. Andover, MA 01810 USA

www.smith-nephew.com

©2016 Smith & Nephew, Inc. All rights reserved.

Trademark of Smith & Nephew. Reg. US Pat. & TM Off. All Trademarks acknowledged.

